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A mathematical analysis is carried out to model the series of processes following the 
occurrence of an electron avalanche in a liquid right through to the emission of a 
pressure transient and the formation of a bubble. The initial energy distribution is 
chosen to be Gaussian and it is assumed that the electrical energy injected into the 
system is transformed into thermal and mechanical components. From the mechanical 
point of view, an outgoing spherical pressure transient is formed at the edge of the 
plasma region, and at a later time a bubble is also formed. Theoretically, the pressure 
transient accounts for about 15 Yo of the total injected energy, while it is necessary to 
revert to experimental results to fix the energy associated with the bubble (about 2 "A). 
A minimum such value can, however, be estimated. The maximum pressure amplitude 
is calculated. Concerning the thermal component of the energy, some is absorbed as 
internal energy by the liquid, while the remainder is stocked as latent heat of 
vaporization. The maximum temperature difference is derived as are the different 
energies as functions of the total injected energy. The advantage of this type of model 
is that the gas/vapour temperature in the bubble can continue to rise after the phase 
change takes place. The maximum bubble size following a given energy injection is 
calculated assuming an adiabatic expansion process. A mathematical expression for 
the liquid flow induced by the outgoing pressure transient is also found. Comparison 
between experimental and theoretical results is particularly good. 

1. Introduction 
The first major published study of cavitation and bubble dynamics was undertaken 

by Besant (1859), with an analytical treatment carried out by Rayleigh (1917). 
Although this was a particularly simple model for spherical bubble collapse, it gave 
remarkedly good results and still forms the basis of today's bubble dynamics research. 
The subject has since advanced to the point where the conditions of cavitation onset 
are predictable as well as the subsequent effects on both the liquid and any nearby 
boundaries. The phenomenon is observable in any liquid where a phase change may 
occur due to variations in the pressure field. The domain of application is clearly very 
large, for example in ophthalmology, chemical reactors, hydraulic and electrical 
machinery, ultrasound transducers and of course underwater propellers. An extensive 
review of the cavitation bubble has recently been published with a wide ranging and 
complete bibliography (Leighton 1994). 

Depending on the field of interest, the effects of cavitation can be either destructive 
or beneficial. Cavitation bubbles generated near a solid surface will, eventually, 
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seriously erode matter from that surface (see, for example, Knapp, Daily & Hammitt 
1970; Pearsall 1972; Wheeler 1960; Hammitt 1966, 1980). In sonochemistry, bubbles 
may play the role of a catalyst by favouring certain chemical reactions, while in 
lythotripsy, kidney stones and gall stones can be broken up (Kitayama et al. 1987; 
Coleman et al. 1987; Coleman & Saunders 1989; Delius et al. 1988; Vakil, Gracewski 
& Everbach 1991; Philipp et al. 1993). The appearance of naturally generated 
cavitation bubbles is still random in space and time and thus their study can be very 
time consuming. Artificially generated bubbles are therefore the best means of 
repeatable data collection. 

Many experimental techniques have been developed to this end, including the use of 
electrical breakdown of liquids (Harrison 1952; Naude & Ellis 1961), but the most 
important one is the optical breakdown of liquids (see, for example Lauterborn 1972; 
Vogel & Lauterborn 1988 ; Hentchel & Lauterborn 1982; Alloncle et al. 1990; Alloncle, 
Dufresne & Autric 1993; Sacchi 1991). This involves focusing an intense beam of laser 
light at a fixed point in the liquid. Breakdown occurs at the focal point. Another means 
of repeatedly generating bubbles of a given size involves the application of an electric 
field between a point and a planar electrode (Kattan, Denat & Lesaint 1989; Kattan, 
Denat & Bonifaci 1991). The observation of current impulses indicates the occurrence 
of electron avalanches at the point and thus the formation of a bubble there as a 
consequence. In the case of laser breakdown, bubble sizes range typically from a few 
hundred microns to several millimetres, while in the second case from a few microns 
to a few hundred microns, depending on the energy absorbed by the liquid. In both 
cases, the bubble appearance is linked to the formation of a ‘micro-plasma’ and the 
emission of pressure transients. 

There is to date in the literature no available analysis of the transformation of the 
initial injected energy forming the plasma into the thermal and mechanical energies 
relevant to the formation of a bubble. The aim here is to develop such a model, linking 
in a formal way the pressure transient amplitude, the liquid and vapour temperatures 
and the maximum bubble size, etc., to the injected energy. In this energy model, a 
number of reasonable approximations, e.g., concerning the plasma, need to be made 
since certain quantities are not directly measurable. 

Therefore, in order to carry out as complete a theoretical study as possible of the 
phenomena observed in artificial bubble generation applicable to both laser breakdown 
of liquids and formation due to electrical current impulses, the analysis must begin with 
consideration of the energy Ft( injected into the system and how it evolves, i.e. the 
formation of a cold plasma in the liquid and the subsequent appearance of a pressure 
wave and a bubble. It is known from experimental evidence that most of the energy 

(about 80 YO) serves to heat the liquid while most of what remains is dissipated by 
the emitted pressure wave (Vogel & Lauterborn 1988; Vogel, Lauterborn & Timm 
1989). For a realistic account of events, the dynamics of the bubble itself must then be 
considered in relation to its position behind the outgoing pressure wave. Since full 
access to the data concerning electrically generated bubbles as well as the conditions 
under which the experiments were carried out is available, the analysis is based on 
those experiments. However, the resulting expressions should apply to laser breakdown 
phenomena. 

The assumptions made in the analysis are stated followed by mathematical treatment 
of the energy injection and its transformation into thermal and mechanical 
components. In as much as is possible the chronological order of the observed 
experimental events will be followed. 
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2. Formulation of the model 
2.1. Assumptions 

The energy injection takes the form of an electron avalanche in the liquid phase, giving 
rise to a spherical volume containing separated electrical charges (positive ions and 
electrons). The dimensions of this plasma zone are generally of the order of the radius 
of curvature of the point (Hernandez-Avila, Bonifaci & Denat 1994). It is referred to 
as a localized non-equilibrium plasma. Its radius is r,, with its centre defined as r = 0. 
It is further supposed that at that particular point the pressure and temperature rise 
almost instantaneously from (T,, P,) to (Tmo, P,,,) at the moment of energy deposition. 
The values (T,,,,Pmn) are also assumed to be much greater than the critical values 
(c, P,). The injected energy is assumed to break up into thermal components (internal 
and heating) and mechanical components (bubble and pressure transient). 

2.2. The initial energy distribution in the plasma 
In the short time it takes for the plasma to form ( z  10-l' s) no density or volume 
change can occur. Consequently the local temperature T rises dramatically with a 
corresponding rise in pressure P. It is also supposed that for r > yo, the initial radius 
of the plasma, the temperature and pressure are as yet unchanged from ambient values. 
Experimental data on either distribution are particularly difficult to obtain and the 
reasonable assumption that they are Gaussian is made. This is generally taken to be the 
case in laser breakdown (Docchio et al. 1988). Thus, the distribution g(r) is written 

for r E  [O, r ] Here, P, is the undisturbed applied hydrostatic pressure and P,,, the 
0. . 

maximum initial pressure value at the plasma centre, (T is the Gaussian standard 
deviation. It has been chosen to be the same for both temperature and pressure. This 
is usual when dealing with gases, but care must be taken in the case of liquids. This 
point will be discussed later. It is appropriate here to relate the plasma volume in some 
physical way with the initial size of the bubble. This will help in the definition of the 
initial conditions for the bubble growth. 

In the pressure phase diagram shown on figure I ,  the distribution of pressure from 
the plasma centre ( r  = 0) outwards to r = r,, is graphically represented. This is a 
straight line making an angle a with the horizontal axis and is given by 

There is a lower limit on the value that a: can take, denoted a[ ,  

Both the pressure and temperature at the centre are considered 
critical values and, as represented in figure I ,  it is assumed that 

(2 a) 

where 

(2 b) 

to be well above the 
the pressure-vapour 

curve is not crossed. If it were crossed, an interface would appear at the radius 
corresponding to the point of crossover. Thus, there would be a significant quantity of 
injected energy lost to heating the surrounding liquid. This is assumed not to be the 
case and the initial bubble formation involves the entire plasma region of radius r,,. 

With the qualitative assumption of Gaussian distribution of temperature and 
pressure, some means of quantitatively evaluating both of these must be defined, 
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r 

FIGURE 1. Schematic diagram of the radial variation of the plasma state (solid line) for Gaussian 
distributions of temperature and pressure (see equation (2a)). The dashed line represents the lowest 
limit the distribution can have (equation (2b)). Scales are arbitrary. T, is the boiling temperature 
at P,. 

relating them to the total injected energy. To this end, the energy is supposed divided 
into two components: thermal energy (ET) to bring the temperature from T, to T,, 
and mechanical energy (Ep)  to change the pressure from P, to Pmo, with Gaussian 
distributions about these centre-point values. If K is the total injected energy, then 

K= E,+Ep.  (3) 

Energy losses to light emission are ignored (Vogel& Lauterborn 1988). Experimentally, 
between 10% and 20% of the injected energy is typically lost to an initial pressure 
transient, less than 5 % to the bubble and the remaining 80 YO or so is transformed into 
heat. It is among our intentions to physically justify these orders of magnitude. 

Before determining the two energy components in (3), it is necessary to discuss the 
formation of the pressure transient from the initial Gaussian pressure distribution in 
the plasma. From the centre out, a pressure wave is emitted, whose velocity of 
propagation is a direct function of the pressure at any given point; the higher the 
pressure, the greater the velocity of sound. The emitted pressure waves will therefore 
‘catch up’ with each other to form an unsteady pressure front (Osborne & Taylor 
1946). 

For simplicity, it is assumed that this redistribution of pressure occurs without 
energy loss, and that the initial maximum amplitude on the pressure transient front, 
formed at a distance, say, rco from the centre, is pC(rc0, 0) = P,, - P,. The pressure 
distribution behind the front is taken to be uniform and equal to P,(O,  t),  see figure 2. 
It is also supposed that the pressure will redistribute itself far more quickly than the 
temperature, and so the latter will not have been significantly modified by the time the 
pressure front has formed (Zel’dovich & Raizer 1966). As the pressure transient moves 
outwards, dissipation will set in, and the pressure behind it drops continuously and 
uniformly. 

Some discussion as to whether a shock wave is formed or not is appropriate here. 
By definition, a shock wave is a surface in a fluid through which there are sharp 
gradients in pressure, velocity, density, etc. Such surfaces are very thin, being of the 
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FIGURE 2. Simplified evolution of the pressure distribution in the plasma leading to shock formation: 
(a) initial Gaussian distribution with sound velocity denoted as C,, (b) formed pressure front with 
velocity V,;  the pressure behind the front drops as the wave travels outwards. The areas under each 
curve should be equal. 

order of a micron, and are considered surfaces of discontinuity. Effectively, the typical 
time of passage of a thermo-elastic pressure transient through a given point is several 
nanoseconds. Multiplication by the velocity of sound yields a length scale of microns 
(Alloncle et al. 1993; Vogel & Lauterborn 1988). The Tait equation of state for a liquid 
is assumed to hold (Cole 1948): 

= const., P + B  
pn 

(4) 

where n and B are empirical constants which depend on the nature of the liquid in 
question; for example, n = 10.7 and B = 120 MPa in cyclohexane. It can be shown that 
in the case of a maintained sharp pressure transient, the maximum condensation ratio 
is 

where p, and p1 refer to the density in front of (undisturbed) and behind the pressure 
front respectively. The higher this number, the greater the likelihood of the pressure 
transient developing into a shock front. In the case of liquid cyclohexane, k takes a 
value of about 1.52. For a perfect gas, the value is 6. On this basis, it would be unwise 
to refer to shocks without further evidence. Recent measurements by Alloncle et al. 
(1993) of the pressure profiles and propagation velocities in the case of laser breakdown 
in liquids (specifically water) demonstrate that a shock wave is indeed formed, but that 
due to the spherical symmetry of the problem, it quickly degenerates into a pressure 
transient propagating at the speed of sound at a short distance from the point of 
breakdown. There is also experimental evidence that the velocity of the pressure 
transient is greater than the speed of sound very close to the energy deposition area. 

The next step in this analysis is to determine the initial pressure maximum in the 
plasma P,, - Pz, which is also assumed to be the maximum amplitude of the pressure 
transient/shock front at its formation, the pressure level behind the front, P,, - P,, and 
the maximum temperature value Tm0. 

2.3. The pressure amplitude and the mechanical energy E p  
With the assumption of Gaussian distribution, the initial pressure P,(r) is given by 

exp (- r2/cT2) + A', Po(r) - P, = AP, = ___ 
A 

n( 2n)l'Z 
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where A and A‘ are constants and g is the standard deviation. To fix the constants 
suppose first that the plasma centre is the origin. Thus, the pressure will be maximum 
there, i.e. 

AP,,, = Pm0 - P, = ____ A +A‘. 
a( 279112 (7) 

At the edge of the plasma (r = r,) the pressure Po(r) = P,. The expressions for A and 
A’ are then found to be 

- (Pmo - P,) exp (- r;/2a2) A’ = a(2n)1/2 (Pmo - P,) A =  
1 - exp (r;/2g2) ’ 1 - exp (- r,2/2a2) 

which when substituted into (6) gives 

[exp (- r2/2a2) -exp (- r;/2g2)]. Pmo - Po@) - P, = 
1 - exp (r9/2g2) (9) 

The ‘equivalent’ mechanical energy, Ep, injected into the liquid is related to the 
pressure via the expression 

Ep = ill, AP d V = I” (P(r) - P,) 4xr2 dr. 

The energy injection is taken to occur instantaneously at time t = 0. For t > 0, there 
is no other source of energy appearing and thus the above integral is valid at all times 
if dissipation is assumed negligible. Therefore it is possible to use the initial pressure 
distribution &(r) (expression (9)) in (lo), giving 

E p  = 4 x r  (pmo - [exp (- r2/2g2)  - exp ( - r,2/2a2)] r2 dr. (1 1) 1 - exp (- r t /2v2)  
The first expression on the right-hand side is integrated using the substitution-of- 
variables method (Y = r2/2g2) ,  giving an incomplete Gamma function and (1 1) thus 
becomes 

4x P,, - P, 
[3c~~(+x)”~ Y(& r:/2a2) - ri  exp (- r:/2a2)]. (12) E~ = T I - exp ( - r,2/2cr2) 

The pressure difference Pm0 - P, is then written 

As the pressure transient travels outwards, the pressure behind it is taken to be uniform 
and equal to the value at the centre r = 0. Thus, from (lo), with P(r) = P(0) = pi, = 
constant, one obtains 

3 E P  Pmo-P,(r = 0) = p. - p  = -- 
to 4% r: ’ 

i.e. only the uniform pressure behind the transient is taken into account, the 
contribution to the integral from the thin transients themselves being negligible. 
Expression (14) relates the maximum pressure amplitude in the shock wave to the 
proportion of injected energy transformed into mechanical energy. The important 
unknown here is the total mechanical energy Ep, which must now be evaluated by 
physically examining how it is divided up between the pressure wave and the bubble. 
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2.4. Mechanical energy distribution in the plasma 
It was assumed that the mechanical energy E, is a percentage (10-20) of the total 
injected energy and that it is further divided into that taken by the pressure transient 
(or shock wave) E,, and that of the bubble itself Eh, i.e. 

E, = E,,-kE,. (1 5 )  
2.4.1. The energy corresponding to the pressure transientjshock wave 

Initially, the energy of the pressure transient and of the bubble mainly correspond 
to impulse motion (Hentschel & Lauterborn 1982). These authors showed that the 
pressure wave energy is given by the impulse expression (Cole 1948) 

where O(rc,,) z 4r,,/C, is the shock wave time constant (Brinkley & Kirkwood 1947). 
Here C, is the speed of sound in the liquid at (Pm, T,) and pJ;. is the liquid density 
under the same conditions. (It is also obtained by squaring the shock wave velocity, 
given by the Hugoniot-Rankine relation, and multiplying by liquid density and 
volume.) 

Combining equations (15), (16) and (13) gives a quadratic equation in P,,- P,, for 
which the solution is 

P,, - P, = ;(b + P), (17) 
where A = b2 - 4c and 

Obviously, d must be 2 0. Eb and G- are, theoretically, the only unknowns in the above 
expression for Pm0- Pm, and thus, for a given value of E,, a minimum limiting value 
for u can be defined: slim =f (Eb ,  r,) .  On closer examination of the above expressions, 
this should more properly be written gZim =f(Eb,  r,,,pX, C,J. In bubble generation by 
localized deposit of energy, it has been well verified that the energy of the bubble is 
directly proportional to the injected energy (Giovanneschi-Testud 1987 ; Kattan 1990). 
Further, in this case of the electrical formation of a bubble following a current impulse, 
the plasma radius is close in value to the radius of curvature of the point electrode. The 
equivalent physical dimension in laser-induced breakdown could be chosen to be the 
radius of the focal spot. Applying the Vashy-Buckingham theorem to the function 
czim =f( q, r p ,  p x ,  C,) leads to the existence of a direct relationship between the 
following two non-dimensional numbers : azim/rp and q / ( r :  p, C",. Using the Tait 
equation on the second of these changes it to q / ( r i n B ) .  Though there is no obvious 
means to fix the relationship between these, the most simple mathematical relationship 
is that of proportionality. This clearly has no a priori physical basis, it merely allows 
a first-order estimate for aZim, since exact values can be ascribed to q, rp ,  n and B. 
Supposing the constant to be 1 (it would be of order 1) gives the following values for 
eLim in cyclohexane, n-decane and n-pentane respectively: 69, 44 and 41 %. 

It is possible to give reasonably accurate experimental values to Eb and guess the 
value of c bearing the above calculation in mind, assuming that its influence is not too 
dramatic. Typical values are given in table 1 for a number of different liquids for 
P,, - t, and E,, (YO of q) as a function of energy injection, radius of curvature of the 
point and the applied hydrostatic pressure. 
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cyclohexane n-decane n-pentane water 

2.00 0.35 0.37 1800.00 
1.50 0.70 1.10 140 

Y (nJ) 
ro (Pm) = r,  
p, (MPa) 1 .oo 1 .oo 1 .oo 0.10 
p, ( M W  4.07 2.12 3.37 2.21 
T (K) 553.50 617.70 469.70 647.30 
E, (% of 2.00 1.90 1.30 2.90 
n 10.70 10.00 13.30 7.15 
B (MPa) 121.80 115.10 45.50 300.00 

rc (Pm) 6.20 3.30 5.50 593.40 
p,, (MPa) 15.70 14.90 5.87 22.70 
P,O - p, ( M W  61.29 57.99 23.41 113.30 
co- c (K) 1223.60 1754.20 1206.50 92 1 .OO 
E,, (% of w 12.13 10.66 8.18 23.06 
E,, (% of WJ 55.29 64.28 62.09 32.22 
E, (% of WJ 30.58 23.16 27.93 41.82 
E, (% of w 14.13 12.56 9.48 25.96 
E, (% of 85.87 87.44 90.02 74.04 

cr (% of r,) 75 95 55 100 

TABLE 1. Physical constants, given and derived theoretical values of a number of quantities in 
cyclohexane, n-decane and n-pentane in the case of electrically generated bubbles and in water for a 
laser-generated bubble. 

Clearly, pressures inside the plasma can be very high (> 50 MPa). In the case of laser 
breakdown in water, Alloncle et al. (1993) extrapolate to initial values of the order of 
lo2 MPa from their experimental results. 

Finally, from (17), it can be seen that the pressure (P,, - P,) is related to the square- 
root of the bubble energy Eb. It is known that the bubble energy is proportional to the 
injected energy K (Giovanneschi-Testud 1987, and figure 9 here), giving a direct 
relationship between (P,, - P,) and (K)l/'. In fact, using typical order-of-magnitude 
values in (17) for this type of problem yields that (Pmo-Pm) is almost directly 
proportional to ( K)liZ. Recently, in laser-induced breakdown, Noack & Vogel(l995) 
obtained the experimental result (Pmo- P,) cc (K)p, with p = 0.52. Though it requires 
further experimental investigation, it is, nevertheless, possible to say that expression 
(17) and its derivation do have some experimental backup, albeit scant at present. 

2.5. Thermal energy within the plasma 
The maximum temperature T,, due to the energy injection is estimated as follows. 
Experimental evidence shows that the deposition of charge into the liquid does not 
occur instantaneously: there is a necessary absorption time tabs. In cyclohexane, this is 
of the order of s. The temperature distribution g(r) is assumed to remain 
Gaussian during this time. The energy thus absorbed is internal (Ein). The remaining 
thermal energy is stocked as latent heat of vaporization L, such that E, = NL, where 
Nis the number of vaporized molecules. Clearly the liquid will have a very high thermal 
resistance compared to the gas/vapour (Nigmatulin, Khabeev & Nagiev 1981) and 
thus N will be given by (Kattan et al. 1989) 

where rg is related to the perfect gas constant and given by rs = 8.314 J K-' and R, is 
the maximum radius of the bubble. 
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The expression for the internal energy is given by Hu (1969): 

d2Ei, = C,pc4nr2dr -dr , E:, 1 
where C, is the calorific capacity at constant volume and pc is the critical density of the 
liquid. The function 0 is given by 

whereflr) =f( t / tabs)  is a function going from 0 to 1 during the absorption time and 
0(r, 0 = T(r, 0 - T, = (Lo - T,) g ( r ) f ( r ) ,  (20) 

Any diffusion of heat by conduction is justifiably neglected in the time scale involved. 
The hypothesis is also made that 

j:f(r)di = 1. 

This implies that the absorption of energy is complete and takes place in a time shorter 
than that necessary for the pressure transient to form. This is verified in most of the 
liquids studied experimentally, the notable difference being for liquid argon 
(Hernandez-Avila et al. 1994). It is not possible to say at present whether this will be 
the case for all cryogenic liquids (McCluskey & Denat 1996). Therefore, for the liquids 
considered, the temperature reaches its maximum value whenf(7) = 1, and due to the 
rapidity of the process it can be said that the temperature rise is almost instantaneous. 
Furthermore, C, is assumed to be constant. This is obviously not the case physically: 
it is a simplification made in the model. 

Integrating (19) with respect to 7 and using hypothesis (22) gives 

dEi, = C, pc 47cr2g(r) dr( T,, - T,). (23) 
Integrating a second time with respect to the radius up to r = T o  and combining the 
result with (1 1) leads to an expression for the maximum temperature at the centre of 
the plasma: 

R, is the perfect gas constant (287 J kg-l K-l) and y the ratio of calorific capacities. 
Some computed values for two experimental liquids are given in table 1. The energy 
ratio in (24), (ET-E,)/Ep, has this form since the temperature rise is due to the 
increase in internal energy only : phase change takes place at constant temperature. 

It is clear from this that the plasma temperature, though above the critical 
temperature is still ‘low’. It is in this sense that the plasma may be termed cold. 

The model presented here to account for the internal energy is an improvement on 
that of Kattan et al. (1989). That particular model breaks down when the applied 
pressure goes above the critical value P,. That is, the liquid in the plasma zone heats 
to the boiling temperature and then changes phase. The initial temperature of the 
vapour is the boiling temperature, which is only defined as long as & < T,. By 
introducing the internal energy in the form of (19), this is no longer a problem since 
the vapour temperature after phase change can continue to rise above the boiling 
temperature. 

In expressions (17) for the pressure and (24) for the temperature, the outstanding 
unknown in the system is Eb, the energy of the bubble. Its derivation is now necessary. 
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2.6. The energy of' the bubble 
The outward radial velocity of the liquid given by Rayleigh (1917) is u = r:r;)/r2,  where 
ro is taken to be the initial radius of the bubble when formed. Note that r, is also the 
radius of the plasma volume. The prime denotes differentiation with respect to time. 
The bubble energy is simply kinetic energy, i.e. viscosity is considered negligible 
(Watson, Chadband & Sadeghzadeh-Araghi 199 l), and therefore 

The (as yet) unknown interfacial velocity dr,/dt is linked to the pressure difference 
across the interface. The initial pressure distribution is such that the first pressure 
transient (the shock wave) has to be emitted in the liquid phase since an interface has 
not formed. A stable interface is formed only when the resulting pressure drop is 
enough to bring the absolute pressure to below the critical value. (It is necessary to 
make this somewhat arbitrary definition of the bubble interface in order to be able to 
determine the moment after which it is possible to refer to a bubble rather than a zone 
of indeterminate phase.) The spherical interface will then (instantaneously) form 
around a volume of vapour. Since, as yet, no change of volume has occurred, the 
pressure of the high-temperature vapour within the interface (or bubble) will be much 
greater than the pressure outside. As a consequence of this 'trapped' pressure 
difference across the interface the bubble will expand radially. Thus the velocity of the 
bubble interface, by analogy with the Hugoniot-Rankine relation will be of the form 

Here P,, is the initial gas pressure inside the bubble and pc is an intermediate density 
value since neither pL (liquid density) nor p, (gas density) are relevant to the interface 
itself in these circumstances. Since the time scale for condensation is too long compared 
to the dynamic scales involved here, it is not unreasonable to suppose that pc takes a 
value close to the critical density value corresponding to the critical pressure and 
volume of the liquid in question The numerator in (26) is simply the pressure difference 
across the interface. Thus the bubble energy is given by 

In terms of the pressure difference, this is 

Clearly, this pressure difference can only be evaluated when the percentage of energy 
transferred to the bubble is known. Thus, once Eb and cr are known it is then possible 
to evaluate the pressure Pmo- P, from (17) and Pgo- P, from (27b). 

It is now possible to estimate the bubble lifetime and size if, in conjunction with 
equation (28b), adiabatic expansion for the bubble is assumed (Prosperetti 1991) along 
with the approximate condition that at r = R, the pressure P = P,. Although bubble 
expansion is not adiabatic over the entire cycle of growth and collapse, the 
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FIGURE 3. Comparison between the theoretical curve for R, as a function of P, (solid line) and 
published experimental results (symbols with error bars). The dashed line is the best fit of the 
experimental results and is only included as a visual aid. (a) Cyclohexane with x 2 nJ, rp  = 1.5 pm 
(Kattan et al. 1991), (b) n-decane with x 0.35 nJ, r2, = 0.7 pm (Kattan 1990) and (c )  n-pentane 
with z 0.37 nJ, r ,  = 1.1 pm (Kattan 1990). 

approximation does not introduce too great an error when calculating the maximum 
bubble radius. The relevant equations for adiabatic bubble expansion are 

R, z r,,(Pgo/Pm)1'3y (28 4 
and t ,  z 1.83 R,(p,/P,)1i2. (28 b) 
The curves shown in figures 3(a), 3(b) and 3(c) are for the liquids cyclohexane, n- 
decane and n-pentane, for which data are available. They will be discussed later. 

3. Bubble formation due to breakdown of the liquid 

(non-equilibrium) plasma and on the initial growth of the bubble. 
This section is an examination of the effects of the outgoing pressure wave on the 

3.1. Behind the pressure transient/shock front 
Once the shock front is formed, it moves through the liquid, compressing it. The 
pressure at a radial position r in the liquid passes from P, to P, such that 

= I+--(M;-l), 2n 
P,+B n+ l  

where M ,  is the Mach number of the shock front. Equation (29) is derived from 
combining the equations of conservation of mass and momentum across the shock 
wave with the Tait equation of state for a liquid. It is analogous to the expression for 
shock waves in a perfect gas, where B = 0 and the coefficient of the term in parenthesis 
is y. Generally, in this geometry the amplitude of a propagating wave decreases as l / r  
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(Cole 1948). For the amplitude of the pressure transient, Brinkley & Kirkwood (1947) 
obtained the following expression (the acoustic approximation) : 

where r,(t) denotes the position of the pressure transient at time t and r, 2 rCo. 
Rather than using the Langrangian form of the equations it is more instructive to 

proceed in an Eulerian frame of reference (see, for example, Church 1989). At a fixed 
position re, Church assumed that the pressure variation there was similar to the 
response of an RC circuit, i.e. 

where t ,  is the time taken by the shock front to reach the position r,  and B(r,) is the 
time constant of the shock wave. From (31) it is clear that, at re, the liquid becomes 
less and less compressed in time with the passage of the shock wave. In other words, 
P(re, t + At)  < P(rc,  t) .  The pressure behind the shock is quasi-uniform and some 
mechanism needs to be envisaged to bring about intermediary pressure values between 
P(r,, t + A t )  and P(rc, t ) ,  in order to explain why the shock profile is not discontinuous 
behind the maximum amplitude as it is in front of it. To this end, the shock wave is 
considered to be a source of pressure waves (i.e. an acoustic source) and therefore 
the acoustic approximation can be used for the liquid behind it. It is now possible to 
estimate the effect of this acoustic source on the spherical volume r < re. The 
equations of continuity and momentum in spherical polar coordinates are then written, 
respectively, 

and 

au 1 ap - = -__ 
at pm ar 

l a  
c: at mr2ar  

- - p  --(r2u) 
I ap -- - (33) 

for 0 d r d re (u is the radial velocity of the liquid). If (33) is differentiated with respect 
to t ,  and the liquid velocity eliminated using (32), the following solution to the system 
is obtained (using (31)): 

In terms of the velocity the solution is 

P(r, t )  - P, + P(r, to)  - P, 1 1 
u(r, t )  - u(r, to) = - +--[ (P(r,  t’)-P,)dt’. (35) 

P, c m  Pm c m  Pm r -  rco to 

It is of some significance to examine these two solutions in detail. For 0 d r < ro, 
the factor (re - reo)/(r - re) in (34) is strictly negative, since rc0 < re. Therefore, 
(P(r ,  t)-Pm) < 0. It is not difficult to deduce from this that the right-hand side of (35) 
is positive, i.e. that (u(r, t ) -u(r ,  to)) > 0. (Note that the second term in (35) is positive 
since P(r, to) = e0 > P,.) This means that the liquid is entrained by, and accelerates 
outwards behind, the pressure transient. The liquid thus stressed (radially outward 
flow from a point) will cavitate and a bubble will form. This is clearly a more rigorous 
formulation of the ‘afterflow’ effect discussed by Cole (1948) and goes towards giving 
theoretical justification to some of the experimental results of McCluskey & Denat 
(1996). An outgoing spherical pressure transient will cause the pressure behind it to 
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drop and bring about circumstances where a bubble interface can form. The relative 
positions of both the pressure transient and the bubble at that instant are calculated 
in the next subsection. 

3.2. Position of pressure transient at liquid breakdown 
For this a relationship between the radial distance r, and the initial known quantities 
is needed. The amplitude and velocity of spherical wave motions decrease as the wave 
travels outwards. Thus, a shock front with velocity V, will eventually slow to the 
velocity of sound C,. Cole (1948), via the theory of Kirkwood & Bethe (1942), gives 
an expression for the velocity of the shock front: 

where, from Hugoniot’s relation, 

(i.e. the acoustic approximation, since u+O when r,+ 00 and V,+ C,. Using this in 

The Mach number is eliminated from (38)  by substituting it into (29) and expanding. 
To first approximation, one obtains 

If the pressure in the bubble when it is formed is Pso, then the pressure in the liquid 
behind the shock wave is related to Po, via the momentum balance normal to the 
interface : 

The simplifying assumption that reO = ro is made and from this it can be deduced that 
the radial position of the pressure transient at the instant of the bubble formation is 

Typical calculated values are given in table 1. 
The value of approximately 600 pm for rc in the water case corresponds to a time of 

the order of 300 ns (Giovanneschi-Testud 1987), which is close to the experimental 
delay between the luminous flash of the initial plasma and the appearance of the bubble 
(Alloncle et a/. 1993). 

4. Results and discussion 
The curves of the maximum bubble radius as a function of applied pressure are given 

in figures 3 (a) ,  3 (b) and 3 (c). The corresponding experimental results are also shown. 
The remarkable agreement indicates that the series of approximations made in the 
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FIGURE 4. Comparison between the theoretical curve (solid line) for R ,  as a function of P, and 
experimental results (symbols with error bars) of laser breakdown in water (Giovanneschi-Testud 
1987). 4 x 1.8 mJ. The dashed line is the best fit of the experimental results. 
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FIGURE 5. Sensitivity of the initial maximum pressure in the plasma Pmo- P, and of the initial radius 
of the plasma r,( x ro) to errors in the value of the standard deviation u of the Gaussian distribution 
curve (equation (1)) for cyclohexane. The variation in both is less than 10% for an error of 15% 
in u. 

above analysis does not violate the energy conservation laws, and one can expect to 
closely predict the maximum sizes of bubbles in these liquids given only the injected 
energy V( and the value of Eb. Agreement, however, for n-pentane was less good, 
though the experimental results did not follow a ( V(/P,)1/3 law. In each case, bubbles 
were detected up to pressures close to the critical value. In the case of optical 
breakdown in water (figure 4) there is a very close correspondence between theory and 
experiment over all but the lowest values of the applied pressure. This is because the 
lowest pressures approach the vapour pressure for water, and other phenomena may 
be expected to intervene. 

There are a number of parameters appearing in the above analysis for which values 
were chosen, i.e. v, the standard deviation in the Gaussian distributions of equation 
(l), and r,,, the initial size of the plasma and the bubble. Figure 5 shows the sensitivity 
of both I ,  and P,, - P, in cyclohexane when v is varied by 15 % around its chosen 
value, i.e. that calculated using (17). In both cases, the variation is less than lo%,  
which implies that an error in the choice of v does not have a significant effect on the 
rest of the calculated quantities. This is important since it is not possible to verify 
experimentally the initial distribution of energy in the plasma. 
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FIGURE 6. Sensitivity of the initial maximum pressure in the plasma P,, - P, and of the maximum 
bubble radius R, to errors in the value of the plasma radius yo, for cyclohexane. Though the pressure 
is relatively insensitive to changes in the value of r,, the opposite is the case for R,. This could be the 
cause of any divergence between theory and experiment. 

1 

t 1 

m .........., ........ . .......... ....... 

40b,, s , ,  , , a ,i_, ~, ,I 
E S M  

\ 

0 2 4 

p,  ( M W  

FIGURE 7. The balance between the different components (mechanical (E, + E8J and thermal 
(Et,+E,)) of the total injected energy q(= Eb+E,u+E,,+E,) as a function of the applied 
hydrostatic pressure P, in cyclohexane. See $52.4 and 2.5 in the text for the definitions of each term. 
The thermal energies account for approximately 85% of the total. Curves for other liquids are 
expected to be similar. 

Figure 6 shows how the maximum bubble radius and the initial pressure difference 
are affected by varying the value of ro, again in cyclohexane. A 30 YO change in its value 
causes the pressure to vary by only 10%. The maximum bubble size is, however, quite 
sensitive to this quantity, and it is therefore possible that divergence between theory 
and experimental values could be attributable to an erroneous choice of ro. The 
agreement between the theory and the experimental results, however, serves as a 
justification for the choice of values for these parameters. Experimental evidence 
suggests that it is unlikely that a large error in the value of T,  would be made. 

The energy balance is given on figure 7. The internal energy is the main component 
throughout, as is to be expected. The distribution of the thermal energy is, however, 
different to what would be initially expected. As E, is defined as NL,, it is reasonable 
to assume that E, will vary as L,. This happens for the higher values of the pressure. 
At low values, it unexpectedly drops, even though it is known that as the pressure 
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FIGURE 8. Evolution of the initial pressure maximum P,, - P, and the initial temperature maximum 
T,, in the plasma, and the initial pressure of the vapour in the bubble when formed, 4,; as a function 
of the injected energy 
are taken from Kattan (1990). The maximum temperature in the plasma drops dramatically as 
injected energy is increased, since the plasma zone volume will necessarily be substantially bigger. Its 
dimensions depend on the radius of curvature of the point. 

for the liquid cyclohexane. The necessary experimental data linking r,, to 

drops, L, increases. Clearly, it is the variation of N ,  the number of molecules changed 
into vapour, which begins to dominate. Fewer molecules of liquid are vaporized below 
a certain pressure due to the high value of L,. The maximum bubble radius R, 
increases as the pressure decreases, as is seen from experiments, and from (18), the 
pressure and corresponding boiling temperature variations are stronger than the 
bubble size variation and so N drops. 

The total mechanical energy is always of the order of 15%. 
Figure 8 presents the evolution of the maxima of initial temperatures and pressures 

in the plasma, T,, and P,,- P, respectively, and the initial pressure of the vapour in 
the bubble when formed, Pso, as functions of the injected energy K. Some experimental 
data are needed as input in this calculation : r,, x r p  and the relationship linking r p  and 

(Kattan 1990). It is seen that the initial pressure at the plasma centre increases as 
the injected energy increases, whereas the temperature drops rather dramatically. This 
is explained by the fact that in order to get higher injection levels the point tip r p  is 
necessarily larger. Typically the plasma zone has the same dimensions as r,, i.e. 
ro NN r p ,  and is thus correspondingly bigger. A much greater volume of liquid needs to 
be heated with the result that the maximum temperature is lower. There will therefore 
be an upper limit to this process, when the avalanche/plasma zone is too spread 
out. Other processes, such as the total energy deposition time, will probably alter 
substantially in these cases, causing the above analysis to be inapplicable. It may be 
possible to explain the observed phenomena in a cryogenic liquid, argon, along these 
lines (McCluskey & Denat 1996). 

The pressure variation fits with experimental evidence in that the detected shock 
waves have greater amplitudes as increases. 

The breakup of energy in real terms (figure 9) shows that the amount of mechanical 
energy taken by the shock wave increases at a faster rate than that of the thermal 
processes as the energy level increases and eventually assumes a similar magnitude. At 
the low energy injection values, the most important component becomes the internal 
energy (ET - E,). This is consistent with the physics of the problem, since before any 
phase change can take place, the liquid must be heated. 
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FIGURE 9. Evolution of the thermal, E,( = E, + E,,), and mechanical, E,( = E,, + E,,), energies as a 
function of injected energy in cyclohexane. At low injected energy values, the internal energy is the 
most important component. The necessary experimental data are taken from Kattan (1990). 
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FIGURE 10. Evolution of thermal and mechanical energies (as percentages of the total injected energy 
PVJ plotted as a function of the total injected energy in cyclohexane. Although the relative amount 
of energy taken by the mechanical processes increases over most of the range of &, there is never a 
point at which they take more energy than the thermal processes. The data are taken from figure 9. 

In terms of percentages of q, the mechanical processes increase in relative 
importance compared to the thermal ones, both levelling off at higher energies (figure 
10). 

The final curve (figure 11) shows the position of the pressure transient/shock wave 
at the moment when the bubble is properly formed. Our assumption that bubble 
growth is influenced by being formed in the decreasing tail of the outgoing pressure 
wave appears quite feasible for smaller bubbles (low F). Its relative position at the 
higher values of indicates that its influence is limited to a smaller proportion of the 
bubble growth period. 

It is reasonable to conclude at this stage that the series of assumptions made on the 
physical processes taking place following a rapid localized deposition of energy into a 
fluid are correct, as are the conclusions of the analysis for both methods of artificial 
bubble generation (laser and electrical). These are now listed. 

(i) Following a large enough energy deposition, the temperature and pressure of the 
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FIGURE 11. Position of the outgoing pressure transient rc relative to the initial bubble radius ro plotted 
as a function of the injected energy y.  This is indicative of the relative velocities of the bubble 
interface and the pressure transient. For low energy injections (y < 5 nJ), the pressure transient has 
not travelled far enough away from the bubble to avoid influencing its behaviour. For larger 
bubbleslenergy deposits the shock wave travels further faster, thus decreasing its influence on the 
bubble growth. 

liquid rise to values well above the critical values, and a non-equilibrium plasma forms. 
The distributions of both pressure and temperature are Gaussian within the plasma 
and uniform and unchanged outside. 

(ii) The energy divides into two components: about 85 YO to thermal effects and 
15 YO to mechanical. 

(iii) The pressure redistributes itself more quickly than the temperature: a pressure 
transient is emitted, accompanied by a drop in pressure in the centre of the plasma 
region. When this goes below the critical level, a bubble interface forms, of dimensions 
close to those of the plasma, behind the outgoing pressure wave/shock wave. 

(iv) Once the pressure at the centre has dropped, the temperature of the liquid will 
be high enough to vaporize it. The bubble grows rapidly due to the expansions of the 
(pressurized) vapour. It reaches a maximum size when the internal vapour pressure 
falls below the ambient hydrostatic pressure and collapses in on itself. 

(v) At the same time, the outgoing pressure transient induces an outward radial flow 
of the liquid behind it. This is the ‘afterflow’ referred to by Cole (1948). The spherical 
geometry means that a flow singularity occurs since there is no source of matter. Such 
an effect is masked due to the simultaneous vaporization of the liquid and expansion 
of the compressed vapour. 

(vi) The initial pressures and temperatures are calculated and found to be well above 
the critical values. The computed values seem reasonable : lo3 K for T,, - T,, 50 MPa 
for P,, - P, and 15 MPa for the initial pressure of the vapour within the bubble Pg0. 

(vii) The supposition that the bubble expansion is adiabatic does not lead to serious 
discrepancy with experimental results. This is to be expected when only considering the 
first cycle of bubble growth. 

The model presented in this paper provides a formal link between the initial energy 
injection into the liquid and the formation of a pressure transient and a vapour bubble. 
It will be of great importance when treating the subsequent dynamical motion of the 
bubble and the influence on it by the outgoing pressure transient. 
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